咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Point-tangent/point-normal B-s... 收藏

Point-tangent/point-normal B-spline curve interpolation by geometric algorithms

由几何算法的 Point-tangent/point-normal B 花键曲线插值

作     者:Gofuku, Shu-ichi Tamura, Shigefumi Maekawa, Takashi 

作者机构:Yokohama Natl Univ Dept Mech Engn Digital Engn Lab Yokohama Kanagawa Japan 

出 版 物:《COMPUTER-AIDED DESIGN》 (计算机辅助设计)

年 卷 期:2009年第41卷第6期

页      面:412-422页

核心收录:

学科分类:08[工学] 0835[工学-软件工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research Funding Source: KAKEN 

主  题:Interpolation Point-normal interpolation Point-tangent interpolation Geometric algorithm B-spline curve 

摘      要:We introduce a novel method to interpolate a set of data points as well as unit tangent vectors or unit normal vectors at the data points by means of a B-spline curve interpolation technique using geometric algorithms. The advantages of our algorithm are that it has a compact representation, it does not require the magnitudes of the tangent vectors or normal vectors, and it has C-2 continuity. We compare our method with the conventional curve interpolation methods, namely, the standard point interpolation method, the method introduced by Piegl and Tiller, which interpolates points as well as the first derivatives at every point, and the piecewise cubic Hermite interpolation method. Examples are provided to demonstrate the effectiveness of the proposed algorithms. (C) 2009 Elsevier Ltd. All rights reserved.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分