版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Univ Aveiro Dept Matemat P-3810193 Aveiro Portugal Univ Fed Rio de Janeiro Inst Matemat & COPPE Prod BR-21941 Rio De Janeiro Brazil Univ Cattolica Norte Dept Matemat Antofagasta 0610 Chile
出 版 物:《DISCRETE MATHEMATICS》 (Discrete Math)
年 卷 期:2013年第313卷第5期
页 面:733-741页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:FEDER funds through COMPETE Operational Programme Factors of Competitiveness Center for Research and Development in Mathematics and Applications (University of Aveiro) Portuguese Foundation for Science and Technology ("FCT-Fundacao para a Ciencia e a Tecnologia") [PEst-C/MAT/UI4106/2011] COMPETE [FCOMP-01-0124-FEDER-022690] Fondecyt, Chile Centre for Research and Development in Mathematics and Applications from the Fundacao para a Ciencia e a Tecnologia - FCT European Community Comision Nacional de Investigacion Cientifica y Tecnologica CONICYT-CHILE, through the Proyecto FONDECYT IC PTDC/MAT/112276/2009 Fundação para a Ciência e a Tecnologia [PTDC/MAT/112276/2009] Funding Source: FCT
主 题:Graphs and linear algebra Graph operations Graph eigenvalues Connectivity
摘 要:Taking a Fiedler s result on the spectrum of a matrix formed from two symmetric matrices as a motivation, a more general result is deduced and applied to the determination of adjacency and Laplacian spectra of graphs obtained by a generalized join graph operation on families of graphs (regular in the case of adjacency spectra and arbitrary in the case of Laplacian spectra). Some additional consequences are explored, namely regarding the largest eigenvalue and algebraic connectivity. (C) 2012 Elsevier B.V. All rights reserved.