咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Superconvergence and asymptoti... 收藏

Superconvergence and asymptotic expansion for semidiscrete bilinear finite volume element approximation of the parabolic problem

作     者:Cunyun Nie Shi Shu Haiyuan Yu Yuyue Yang 

作者机构:Department of Mathematics and Physics Hunan Institution of Engineering Hunan 411104 China Hunan Key Laboratory for Computation & Simulation in Science and Engineering Xiangtan University Hunan 411105 China Key Laboratory of Intelligent Computing & Information Processing of Ministry of Education Xiangtan University Hunan 411105 China 

出 版 物:《Computers & Mathematics with Applications》 

年 卷 期:2013年第66卷第1期

页      面:91-104页

学科分类:08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主  题:Linear parabolic problem Bilinear finite volume element Error asymptotic expansion Superconvergence 

摘      要:We first derive the asymptotic expansion of the bilinear finite volume element for the linear parabolic problem by employing the energy-embedded method on uniform grids, and then obtain a high accuracy combination pointwise formula of the derivatives for the finite volume element approximation based on the above asymptotic expansion. Furthermore, we prove that the approximate derivatives have the convergence rate of order two. Numerical experiments confirm the theoretical results.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分