咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Semi-supervised Gaussian rando... 收藏

Semi-supervised Gaussian random field transduction and induction

监督半的 Gaussian 随机的地 transduction;感应

作     者:Yangqiu SONG Jianguo LEE Changshui ZHANG Shiming XIANG 

作者机构:State Key Laboratory on Intelligent Technology and SystemsTsinghua National Laboratory for Information Science and Technology(TNList)Department of AutomationTsinghua UniversityBeijing 100084China 

出 版 物:《Frontiers of Electrical and Electronic Engineering in China》 (中国电气与电子工程前沿(英文版))

年 卷 期:2008年第3卷第1期

页      面:1-9页

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

基  金:This work was supported by the Basic Research Foundation of Tsinghua National Laboratory for Information Science and Technology(TNList) 

主  题:Gaussian process Gaussian random field semi-supervised learning graph based learning 

摘      要:This paper proposes a semi-supervised inductive algorithm adopting a Gaussian random field(GRF)and Gaussian *** introduce the prior based on graph *** regularization term measures the p-smoothness over the graph.A new conditional probability called the extended Bernoulli model(EBM)is also *** generalizes the logistic regression to the semi-supervised case,and especially,it can naturally represent the *** the training phase,a novel solution is given to the discrete regularization framework defined on the *** the new test data,we present the prediction formulation,and explain how the margin model affects the classification boundary.A hyper-parameter estimation method is also *** results show that our method is competitive with the existing semi-supervised inductive and transductive methods.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分