版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Univ Vienna Fac Math A-1090 Vienna Austria Texas A&M Univ Dept Math College Stn TX USA
出 版 物:《COMPTES RENDUS MATHEMATIQUE》 (C. R. Math.)
年 卷 期:2006年第343卷第2期
页 面:111-114页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:Max-Planck Institute for Mathematics in the Sciences Wolfgang Pauli Institute National Science Foundation, NSF, (DMS-0434698) Deutsche Forschungsgemeinschaft, DFG, (436 RUS 113/615/0-1)
主 题:ASYMPTOTES MATHEMATICAL models KLEIN-Gordon equation EIGENFUNCTIONS BOUNDARY value problems -- Numerical solutions
摘 要:The long-time asymptotics are analyzed for all finite energy solutions to a model U(1)-invariant nonlinear Klein-Gordon equation in one dimension, with the nonlinearity concentrated at a point. Our main result is that each finite energy solution converges as t - +/-infinity to the set of nonlinear eigenfunctions psi(x)e(-iwt).