咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >A superlinearly convergent seq... 收藏

A superlinearly convergent sequential quadratically constrained quadratic programming algorithm for degenerate nonlinear programming

为退化非线性的编程的一个 Superlinearly 会聚的顺序的二次地抑制的二次的编程算法

作     者:Anitescu, M 

作者机构:Univ Pittsburgh Dept Math Pittsburgh PA 15213 USA 

出 版 物:《SIAM JOURNAL ON OPTIMIZATION》 (工业与应用数学会最优化杂志)

年 卷 期:2002年第12卷第4期

页      面:949-978页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

主  题:sequential quadratic programming degenerate constraints quadratic constraints superlinear convergence 

摘      要:We present an algorithm that achieves superlinear convergence for nonlinear programs satisfying the Mangasarian-Fromovitz constraint qualification and the quadratic growth condition. This convergence result is obtained despite the potential lack of a locally convex augmented Lagrangian. The algorithm solves a succession of subproblems that have quadratic objectives and quadratic constraints, both possibly nonconvex. By the use of a trust-region constraint we guarantee that any stationary point of the subproblem induces superlinear convergence, which avoids the problem of computing a global minimum. We compare this algorithm with sequential quadratic programming algorithms on several degenerate nonlinear programs.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分