咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Shortfall Risk Minimization in... 收藏

Shortfall Risk Minimization in Discrete Time Financial Market Models

在金融市场建模的分离时间的缺额风险最小化

作     者:Frikha, N. 

作者机构:Univ Paris Diderot LPMA F-75205 Paris France 

出 版 物:《SIAM JOURNAL ON FINANCIAL MATHEMATICS》 (SIAM金融数学杂志)

年 卷 期:2014年第5卷第1期

页      面:384-414页

核心收录:

学科分类:1202[管理学-工商管理] 07[理学] 0701[理学-数学] 070101[理学-基础数学] 

主  题:shortfall risk measures risk minimization dynamic programming principle stochastic approximation algorithm vector quantization Monte Carlo simulation 

摘      要:In this paper, we study theoretical and computational aspects of risk minimization in financial market models operating in discrete time. To define the risk, we consider a class of convex risk measures defined on L-p(P) in terms of shortfall risk. Under mild assumptions, namely, the absence of arbitrage opportunity and the nondegeneracy of the price process, we prove the existence of an optimal strategy by performing a dynamic programming argument in a non-Markovian framework. In a Markovian framework, the shortfall risk and optimal dynamic strategies are estimated using three main tools: Newton-Raphson Monte Carlo-based procedure, stochastic approximation algorithm, and Markovian quantization scheme. Finally, we illustrate our approach by considering several shortfall risk measures and portfolios inspired by energy and financial markets.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分