版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Materials and Engineering Physics Program Ames Laboratory United States Department of Energy Ames Iowa 50011 USA
出 版 物:《Physical Review B》 (Phys. Rev. B Condens. Matter Mater. Phys.)
年 卷 期:2004年第70卷第21期
页 面:214103-214103页
核心收录:
学科分类:0808[工学-电气工程] 0809[工学-电子科学与技术(可授工学、理学学位)] 07[理学] 0805[工学-材料科学与工程(可授工学、理学学位)] 0702[理学-物理学]
基 金:U.S. Department of Energy, USDOE, (W7405-ENG-82) U.S. Department of Energy, USDOE Basic Energy Sciences, BES Division of Materials Sciences and Engineering, DMSE
摘 要:The quantitative determination of the three-dimensional Wulff shape for a metallic crystal-melt system is reported here. The anisotropy of crystal-melt interfacial free energy is experimentally measured for the Al–Sn binary system at temperatures of 300 and 500°C. Equilibrium shapes of liquid droplets entrained within the crystalline phase are measured experimentally on sequential two-dimensional sections, and the three-dimensional Wulff plot is reconstructed. For this system, it is found that a single-parameter description of anisotropy is not sufficient, and the anisotropy is reported using the leading terms of the relevant cubic harmonics. Accordingly, the anisotropy coefficients are determined to be ε1=(1.81±0.36)×10−2 and ε2=(−1.12±0.13)×10−2. In addition, the corresponding normal stiffness components as well as a generalized stiffness are quantified and compared with available predictions from atomistic simulations.