咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >MAGAD-BFS: A learning method f... 收藏

MAGAD-BFS: A learning method for Beta fuzzy systems based on a multi-agent genetic algorithm

作     者:Kallel, I Alimi, AM 

作者机构:Univ Sfax Res Grp Intelligent Machines Sfax Tunisia 

出 版 物:《SOFT COMPUTING》 (Soft Comput.)

年 卷 期:2006年第10卷第9期

页      面:757-772页

核心收录:

学科分类:08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主  题:beta fuzzy systems learning genetic algorithms multi-agent systems distributed genetic algorithms 

摘      要:This paper proposes a learning method for Beta fuzzy systems (BFS) based on a multiagent genetic algorithm. This method, called Multi-Agent Genetic Algorithm for the Design of BFS has two advantages. First, thanks to genetic algorithms (GA) efficiency, it allows to design a suitable and precise model for BFS. Second, it improves the GA convergence by reducing rule complexity thanks to the distributed implementation by multi-agent approach. Dynamic agents interact to provide an optimal solution in order to obtain the best BFS reaching the balance interpretability-precision. The performance of the method is tested on a simulated example.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分