咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Behaviour of pseudo-random and... 收藏

Behaviour of pseudo-random and chaotic sources of stochasticity in nature-inspired optimization methods

作     者:Kroemer, Pavel Zelinka, Ivan Snasel, Vaclav 

作者机构:VSB Tech Univ Ostrava IT4Innovat Ostrava 70833 Czech Republic VSB Tech Univ Ostrava Dept Comp Sci Ostrava 70833 Czech Republic 

出 版 物:《SOFT COMPUTING》 (Soft Comput.)

年 卷 期:2014年第18卷第4期

页      面:619-629页

核心收录:

学科分类:08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:European Social Fund, ESF, (SP2013/114, SP2013/70) Vysoká Škola Bánská - Technická Univerzita Ostrava European Regional Development Fund, ERDF, (CZ.1.05/1.1.00/02.0070, CZ.1.07/2.3.00/20.0072) 

主  题:Pseudo-random number generators Deterministic chaos Simulation Genetic algorithms Differential evolution Particle swarm optimization 

摘      要:Stochasticity, noisiness, and ergodicity are the key concepts behind many natural processes and its modeling is an important part of their implementation. There is a handful of soft-computing methods that are directly inspired by nature or stochastic natural processes. The implementation of such a nature-inspired optimization and search methods usually depends on streams of integer and floating point numbers generated in course of their execution. The pseudo-random numbers are utilized for in-silico emulation of probability-driven natural processes such as arbitrary modification of genetic information (mutation, crossover), partner selection, and survival of the fittest (selection, migration) and environmental effects (small random changes in motion direction and velocity). Deterministic chaos is a well known mathematical concept that can be used to generate sequences of seemingly random real numbers within selected interval in a predictable and well controllable way. In the past, it has been used as a basis for various pseudo-random number generators (PRNGs) with interesting properties. This work provides an empirical comparison of the behavior of selected nature-inspired optimization algorithms using different PRNGs and chaotic systems as sources of stochasticity.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分