版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:USAF Inst Technol Dept Math & Stat Wright Patterson AFB OH 45433 USA
出 版 物:《OPTIMIZATION AND ENGINEERING》
年 卷 期:2004年第5卷第2期
页 面:157-177页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 08[工学] 0701[理学-数学]
主 题:mixed variable programming categorical variables filter algorithm pattern search algorithm thermal insulation heat intercepts nonlinear constraints
摘 要:This paper describes the optimization of a load-bearing thermal insulation system characterized by hot and cold surfaces with a series of heat intercepts and insulators between them. The optimization problem is represented as a mixed variable programming (MVP) problem with nonlinear constraints, in which the objective is to minimize the power required to maintain the heat intercepts at fixed temperatures so that one surface is kept sufficiently cold. MVP problems are more general than mixed integer nonlinear programming (MINLP) problems in that the discrete variables are categorical;i.e., they must always take on values from a predefined enumerable set or list. Thus, traditional approaches that use branch and bound techniques cannot be applied. In a previous paper, a linearly constrained version of this problem was solved numerically using the Audet-Dennis generalized pattern search (GPS) method for MVP problems. However, this algorithm may not work for problems with general nonlinear constraints. A new algorithm that extends that of Audet and Dennis by incorporating a filter to handle nonlinear constraints makes it possible to solve the more general problem. Additional nonlinear constraints on stress, mass, and thermal contraction are added to that of the previous work in an effort to find a more realistic feasible design. Several computational experiments show a substantial improvement in power required to maintain the system, as compared to the previous literature. The addition of the new constraints leads to a very different design without significantly changing the power required. The results demonstrate that the new algorithm can be applied to a very broad class of optimization problems, for which no previous algorithm with provable convergence results could be applied.