咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Symmetry breaking in linearly ... 收藏

Symmetry breaking in linearly coupled dynamical lattices

对称在线性地联合的动态格子碎

作     者:G. Herring P. G. Kevrekidis B. A. Malomed R. Carretero-González D. J. Frantzeskakis 

作者机构:Department of Physics University of Athens Panepistimiopolis Zografos Athens 15784 Greece 

出 版 物:《Physical Review E》 (物理学评论E辑:统计、非线性和软体物理学)

年 卷 期:2007年第76卷第6期

页      面:066606-066606页

核心收录:

学科分类:07[理学] 070203[理学-原子与分子物理] 0702[理学-物理学] 

主  题:NONLINEAR SCHRODINGER-EQUATION BOSE-EINSTEIN CONDENSATE ASYMMETRIC SOLITONS DISCRETE BREATHERS WAVE-GUIDES FESHBACH RESONANCES OPTICAL LATTICES FIBER COUPLERS PROPAGATION THRESHOLDS 

摘      要:We examine one- and two-dimensional models of linearly coupled lattices of the discrete-nonlinear-Schrödinger type. Analyzing ground states of the system with equal powers (norms) in the two components, we find a symmetry-breaking phenomenon beyond a critical value of the total power. Asymmetric states, with unequal powers in their components, emerge through a subcritical pitchfork bifurcation, which, for very weakly coupled lattices, changes into a supercritical one. We identify the stability of various solution branches. Dynamical manifestations of the symmetry breaking are studied by simulating the evolution of the unstable branches. The results present the first example of spontaneous symmetry breaking in two-dimensional lattice solitons. This feature has no counterpart in the continuum limit because of the collapse instability in the latter case.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分