咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Theory-restricted resonant x-r... 收藏

Theory-restricted resonant x-ray reflectometry of quantum materials

作     者:Katrin Fürsich Volodymyr B. Zabolotnyy Enrico Schierle Lenart Dudy Ozan Kirilmaz Michael Sing Ralph Claessen Robert J. Green Maurits W. Haverkort Vladimir Hinkov 

作者机构:Physikalisches Institut and Röntgen Center for Complex Material Systems Universität Würzburg 97074 Würzburg Germany Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB) 12489 Berlin Germany Stewart Blusson Quantum Matter Institute University of British Columbia Vancouver V6T 1Z4 Canada Department of Physics & Engineering Physics University of Saskatchewan Saskatoon Saskatchewan S7N 5E2 Canada Institut für Theoretische Physik Universität Heidelberg 69120 Heidelberg Germany 

出 版 物:《Physical Review B》 (Phys. Rev. B)

年 卷 期:2018年第97卷第16期

页      面:165126-165126页

核心收录:

基  金:Max-Planck-UBC Centre for Quantum Materials Deutsche Forschungsgemeinschaft, DFG, (SFB 1170) 

主  题:Electronic structure Refraction Strongly correlated systems Exact solutions for many-body systems Quantum chemistry methods Resonant elastic x-ray scattering X-ray absorption spectroscopy 

摘      要:The delicate interplay of competing phases in quantum materials is dominated by parameters such as the crystal field potential, the spin-orbit coupling, and, in particular, the electronic correlation strength. Whereas small quantitative variations of the parameter values can thus qualitatively change the material, these values can hitherto hardly be obtained with reasonable precision, be it theoretically or experimentally. Here we propose a solution combining resonant x-ray reflectivity (RXR) with multiplet ligand field theory (MLFT). We first perform ab initio DFT calculations within the MLFT framework to get initial parameter values, which we then use in a fit of the theoretical model to RXR. To validate our method, we apply it to NiO and SrTiO3 and obtain parameter values, which are amended by as much as 20% compared to the ab initio results. Our approach is particularly useful to investigate topologically trivial and nontrivial correlated insulators, staggered moments in magnetically or orbitally ordered materials, and reconstructed interfaces.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分