版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:SUNY Coll Potsdam Dept Math Potsdam NY 13676 USA
出 版 物:《PACIFIC JOURNAL OF MATHEMATICS》 (Pac. J. Math.)
年 卷 期:2011年第253卷第1期
页 面:57-73页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
主 题:compact symmetric space triangular factorization ldu factorization Bruhat decomposition Cayley map Cayley coordinates symplectic leaves compute computation concrete classical connected component Cartan embedding antidiagonal antitranspose
摘 要:Let U/K represent a connected, compact symmetric space, where theta is an involution of U that fixes K, phi : U/K - U is the geodesic Cartan embedding, and G is the complexification of U. We investigate the intersection of phi(U/K) with the Bruhat decomposition of G corresponding to a theta-stable triangular, or LDU, factorization of the Lie algebra of G. When g is an element of phi(U/K) is generic, the corresponding factorization g = ld(g)u is unique, where l is an element of N-, d(g) is an element of H, and u is an element of N+. We present an explicit formula for d in Cayley coordinates, compute it in several types of symmetric spaces, and use it to identify representatives of the connected components of the generic part of phi(U/K). This formula calculates a moment map for a torus action on the highest dimensional symplectic leaves of the Evens-Lu Poisson structure on U/K.