版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Science and Technology on Advanced Functional Composite Laboratory Aerospace Research Institute of Materials & Processing Technology
出 版 物:《Journal of Materials Science & Technology》 (材料科学技术(英文版))
年 卷 期:2019年第35卷第3期
页 面:313-322页
核心收录:
学科分类:08[工学] 0805[工学-材料科学与工程(可授工学、理学学位)] 080502[工学-材料学]
基 金:supported financially by the National Natural Science Foundation of China (Nos. U1435206 and 51672064) the Beijing Municipal Science & Technology Commission (No. D161100002416001)
主 题:Y5Si3C Y3Si2C2 Interphase material Damage tolerant ceramics Electronic structure
摘 要:Researching for interphase materials that can protect SiC fibers from oxygen and water vapor attacks has become one of the most important issues for the applications of SiC_f/SiC composites in high-temperature combustion environment. However, such kinds of interphase materials are not available yet. Herein,we report theoretically predicted properties of two promising interphase materials Y_5Si_3 C and Y_3Si_2C_*** crystallizing in different structures, they share the common features of layered structure,anisotropic chemical bonding, anisotropic electrical and mechanical properties, and low shear deformation resistance. The bulk moduli for Y_5Si_3C and Y_3Si_2C_2 are 78 and 93 GPa, respectively; while their shear moduli are 52 and 50GPa, respectively. The maximum to minimum Young s modulus ratios are1.44 for Y_5Si_3C and 3.27 for Y_3Si_2C_2. Based on the low shear deformation resistance and low Pugh s ratios(G/B = 0.666 forY_5Si_3C and 0.537 for Y_3Si_2C_2; G: shear modulus; B: bulk modulus), they are predicted as damage tolerant and soft ceramics with predicted Vickers hardness of 9.6 and 6.9 GPa, *** cleavage plane and possible slip systems are(000 l) and(0001)[1120] and(1010)[0001] forY_5Si_3C,and those for Y_3Si_2C_2 are {h00} and(010)[101]. Since the oxidation products are water-vapor resistant Y2 Si2 O7, Y2 SiO5 and/or Y_2 O_3 upon oxidation, and the volume expansions are ca 140% and ca 26% for Y_5Si_3C and Y_3Si_2C_2, they are expected to seal the interfacial cracks in SiC_f/SiC composites. The unique combination of easy cleavage, low shear deformation resistance, volume expansions upon oxidation, and the resistance of the oxidation products to water vapor attack warrant them promising as interphase materials of SiC_f/SiC composites for water-vapor laden environment applications.