咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >A SAR imaging method based on ... 收藏

A SAR imaging method based on generalized minimax-concave penalty

A SAR imaging method based on generalized minimax-concave penalty

作     者:Zhonghao WEI Bingchen ZHANG Yirong WU 

作者机构:University of Chinese Academy of Sciences Key Laboratory of Technology in Geospatial Information Processing and Application SystemsInstitute of Electronics Chinese Academy of Sciences Institute of Electronics Chinese Academy of Sciences 

出 版 物:《Science China(Information Sciences)》 (中国科学:信息科学(英文版))

年 卷 期:2019年第62卷第2期

页      面:233-239页

核心收录:

学科分类:080904[工学-电磁场与微波技术] 0810[工学-信息与通信工程] 0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 081105[工学-导航、制导与控制] 081001[工学-通信与信息系统] 081002[工学-信号与信息处理] 0825[工学-航空宇航科学与技术] 0811[工学-控制科学与工程] 

基  金:supported by National Natural Science Foundation of China (Grant No. 61571419) 

主  题:SAR A SAR imaging method based on generalized minimax-concave penalty 

摘      要:Dear editor,Sparse signal processing offers a framework for synthetic aperture radar (SAR) imaging [1, 2]. As an efficient tool in sparse signal processing, L1minimization is often used in the reconstruction of SAR images. When implemented in SAR imaging [3–5], L1minimization offers significant improvement in the properties by suppressing the sidelobes and clutter. However, L1minimization is known to be a biased estimator. The L1minimization based algorithms such as the iterative

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分