版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:University of Chinese Academy of Sciences Key Laboratory of Technology in Geospatial Information Processing and Application SystemsInstitute of Electronics Chinese Academy of Sciences Institute of Electronics Chinese Academy of Sciences
出 版 物:《Science China(Information Sciences)》 (中国科学:信息科学(英文版))
年 卷 期:2019年第62卷第2期
页 面:233-239页
核心收录:
学科分类:080904[工学-电磁场与微波技术] 0810[工学-信息与通信工程] 0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 081105[工学-导航、制导与控制] 081001[工学-通信与信息系统] 081002[工学-信号与信息处理] 0825[工学-航空宇航科学与技术] 0811[工学-控制科学与工程]
基 金:supported by National Natural Science Foundation of China (Grant No. 61571419)
主 题:SAR A SAR imaging method based on generalized minimax-concave penalty
摘 要:Dear editor,Sparse signal processing offers a framework for synthetic aperture radar (SAR) imaging [1, 2]. As an efficient tool in sparse signal processing, L1minimization is often used in the reconstruction of SAR images. When implemented in SAR imaging [3–5], L1minimization offers significant improvement in the properties by suppressing the sidelobes and clutter. However, L1minimization is known to be a biased estimator. The L1minimization based algorithms such as the iterative