咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Second Order Mutual Informatio... 收藏

Second Order Mutual Information based Grey Wolf Optimization for effective storage and de-duplication

作     者:Malhotra, Jyoti Bakal, Jagdish 

作者机构:RTM Univ Nagpur GH Raisoni Coll Engn Dept Comp Sci & Engn Nagpur 440016 Maharashtra India 

出 版 物:《SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES》 (Sadhana)

年 卷 期:2018年第43卷第11期

页      面:185-185页

核心收录:

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 08[工学] 

主  题:De-duplication simhash algorithm Huffman coding Grey Wolf Optimization accuracy 

摘      要:This paper intends to perform de-duplication for enhancing the storage optimization by utilizing the similarity in mutual information. Hence, this paper contributes by proposing a hybrid fingerprint extracting using SH and HC algorithms. Secondly, the data is clustered using the latest technique called as SOMI-GO to extract the metadata. The extracted metadata is stored in metadata server which provides better storage optimization and de-duplication. SOMI-GO is adopted as it provides maximum second-order mutual information based on the similarity index. The proposed SOMI-GO technique is compared with the existing methods such as K-means, K-mode, ED-PSO, ED-GA and ED-GWO in terms of accuracy, TPR, TNR and performance time and the significance of the SOMI-GO method is described.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分