版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Department of Mathematics University of California Berkeley California 94720 USA Berkeley Quantum Information Center University of California Berkeley California 94720 USA Department of Chemistry University of California Berkeley California 94720 USA
出 版 物:《Physical Review A》 (物理学评论A辑:原子、分子和光学物理学)
年 卷 期:2008年第78卷第6期
页 面:062335-062335页
核心收录:
学科分类:070207[理学-光学] 07[理学] 08[工学] 0803[工学-光学工程] 0702[理学-物理学]
基 金:National Science Foundation NSF (0205641)
主 题:entropy codes error correction codes quantum noise QUANTUM-CHANNEL ERROR-CORRECTION Lower bound Nonzero Depolarization Threshold error correction Quantum noise hashing Entropy coding
摘 要:We study encodings that give the best-known thresholds for the nonzero capacity of quantum channels, i.e., the upper bound for correctable noise, using an entropic approach to calculation of the threshold values. Our results show that Pauli noise is correctable up to the hashing bound. For a depolarizing channel, this approach allows one to achieve a nonzero capacity for a fidelity (probability of no error) of f=0.80870.