版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Univ Maribor Fac Elect Engn & Comp Sci SI-2000 Maribor Slovenia Univ Cantabria Ave Castros S-N E-39005 Santander Spain Univ Basque Country UPV EHU Bilbao Spain BCAM Bilbao Spain TECNALIA Res & Innovat Derio 48160 Spain Univ Maribor Fac Nat Sci & Math Koroska Cesta 160 SI-2000 Maribor Slovenia Univ Maribor CAMTP Mladinska 3 SI-2000 Maribor Slovenia Complex Sci Hub Vienna Josefstadterstr 39 A-1080 Vienna Austria
出 版 物:《APPLIED MATHEMATICS AND COMPUTATION》 (应用数学和计算)
年 卷 期:2019年第347卷
页 面:865-881页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:Slovenian Research Agency [J1-7009, J4-9302, J1-9112, P5-0027, P2-0041, P2-0057] PDE-GIR (H2020, MSCA program) Basque Government through the EMAITEK program AEI/FEDER, UE [TIN2017-89275-R]
主 题:Novelty search Differential evolution Swarm intelligence Evolutionary robotics Artificial life
摘 要:Novelty search is a tool in evolutionary and swarm robotics for maintaining the diversity of population needed for continuous robotic operation. It enables nature-inspired algorithms to evaluate solutions on the basis of the distance to their k-nearest neighbors in the search space. Besides this, the fitness function represents an additional measure for evaluating the solution, with the purpose of preserving the so-named novelty solutions into the next generation. In this study, a differential evolution was hybridized with novelty search. The differential evolution is a well-known algorithm for global optimization, which is applied to improve the results obtained by the other solvers on the CEC-14 benchmark function suite. Furthermore, functions of different dimensions were taken into consideration, and the influence of the various novelty search parameters was analyzed. The results of experiments show a great potential for using novelty search in global optimization. (C) 2018 Elsevier Inc. All rights reserved.