咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Noncommutative geometry of Zit... 收藏

Noncommutative geometry of Zitterbewegung

作     者:Michał Eckstein Nicolas Franco Tomasz Miller 

作者机构:Faculty of Physics Astronomy and Applied Computer Science Jagiellonian University ul. prof. Stanisława Łojasiewicza 11 30-348 Kraków Poland Copernicus Center for Interdisciplinary Studies ul. Szczepańska 1/5 31-011 Kraków Poland Namur Center for Complex Systems (naXys) & Department of Mathematics University of Namur Rue de Bruxelles 61 5000 Namur Belgium Faculty of Mathematics and Information Science Warsaw University of Technology ul. Koszykowa 75 00-662 Warsaw Poland 

出 版 物:《Physical Review D》 (Phy. Rev. D)

年 卷 期:2017年第95卷第6期

页      面:061701(R)-061701(R)页

核心收录:

基  金:Marian Smoluchowski Krakow Research Consortium Matter-Energy-Future John Templeton Foundation, JTF, (60671) Fundacja na rzecz Nauki Polskiej, FNP 

主  题:Dirac fermions Quantum simulation Spacetime topology & causal structure Noncommutative geometry 

摘      要:Drawing from the advanced mathematics of noncommutative geometry, we model a “classical Dirac fermion propagating in a curved spacetime. We demonstrate that the inherent causal structure of the model encodes the possibility of Zitterbewegung—the “trembling motion of the fermion. We recover the well-known frequency of Zitterbewegung as the highest possible speed of change in the fermion’s “internal space. Furthermore, we show that the bound does not change in the presence of an external electromagnetic field and derive its explicit analogue when the mass parameter is promoted to a Yukawa field. We explain the universal character of the model and discuss a table-top experiment in the domain of quantum simulation to test its predictions.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分