咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >STRONG KARUSH-KUHN-TUCKER OPTI... 收藏

STRONG KARUSH-KUHN-TUCKER OPTIMALITY CONDITIONS FOR MULTIOBJECTIVE SEMI-INFINITE PROGRAMMING <i>VIA</i> TANGENTIAL SUBDIFFERENTIAL

作     者:Le Thanh Tung 

作者机构:Can Tho Univ Dept Math Coll Nat Sci Can Tho 900000 Vietnam 

出 版 物:《RAIRO-OPERATIONS RESEARCH》 (法国自动化、信息与运筹学;运筹学)

年 卷 期:2018年第52卷第4-5期

页      面:1019-1041页

核心收录:

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 07[理学] 070105[理学-运筹学与控制论] 0701[理学-数学] 

基  金:National Foundation for Science and Technology Development (NAFOSTED) of Vietnam [101.01-2017.25] Can Tho University 

主  题:Multiobjective semi-infinite programming efficient solution weakly efficient solution strong Karush-Kuhn-Tucker optimality conditions tangential subdifferential 

摘      要:The main aim of this paper is to study strong Karush-Kuhn-Tucker (KKT) optimality conditions for nonsmooth multiobjective semi-infinite programming (MSIP) problems. By using tangential subdifferential and suitable regularity conditions, we establish some strong necessary optimality conditions for some types of efficient solutions of nonsmooth MSIP problems. In addition to the theoretical results, some examples are provided to illustrate the advantages of our outcomes.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分