咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Cauchy-horizon singularity ins... 收藏

Cauchy-horizon singularity inside perturbed Kerr black holes

在使不安的克尔黑人洞内的 Cauchy 地平线奇特

作     者:Lior M. Burko Gaurav Khanna Anıl Zenginoğlu 

作者机构:School of Science and Technology Georgia Gwinnett College Lawrenceville Georgia 30043 USA Department of Physics University of Massachusetts Dartmouth Massachusetts 02747 USA Center for Scientific Computation and Mathematical Modeling University of Maryland College Park Maryland 20742 USA 

出 版 物:《Physical Review D》 (物理学评论D辑:粒子、场、重力与宇宙学)

年 卷 期:2016年第93卷第4期

页      面:041501(R)-041501(R)页

核心收录:

学科分类:07[理学] 070201[理学-理论物理] 0702[理学-物理学] 

基  金:National Science Foundation, NSF, (PHY-1414440, 1303724, 1414440, 1303724) U.S. Air Force, USAF, (10-RI-CRADA-09) 

主  题:Classical black holes Singularities In general relativity Spacetime topology & causal structure 

摘      要:The Cauchy horizon inside a perturbed Kerr black hole develops an instability that transforms it into a curvature singularity. We solve for the linearized Weyl scalars ψ0 and ψ4 and for the curvature scalar RαβγδRαβγδ along outgoing null rays approaching the Cauchy horizon in the interior of perturbed Kerr black holes using the Teukolsky equation, and compare our results with those found in perturbation analysis. Our results corroborate the previous perturbation analysis result that at its early parts the Cauchy horizon evolves into a deformationally weak, null, scalar-curvature singularity. We find excellent agreement for ψ0(u=const,v), where u, v are advanced and retarded times, respectively. We do find, however, that the exponential growth rate of RαβγδRαβγδ(u=const,v) approaching the singularity is dramatically slower than that found in perturbation analysis, and that the angular frequency is in excellent agreement.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分