版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Univ Barcelona Dept Estructura & Constituents Mat E-08028 Barcelona Spain Univ Complutense Dept Fis Teor 1 E-28040 Madrid Spain
出 版 物:《QUANTUM INFORMATION PROCESSING》 (量子信息处理)
年 卷 期:2002年第1卷第4期
页 面:283-302页
核心收录:
学科分类:07[理学] 070201[理学-理论物理] 0702[理学-物理学]
基 金:AEN99-0766 19999GR-00097 IST-1999-11053 PB98-0685 BFM2000-1320-C02-01
主 题:majorization quantum Fourier transformation quantum phase-estimation quantum algorithms
摘 要:We prove that majorization relations hold step by step in the Quantum Fourier Transformation (QFT) for phase-estimation algorithms. Our result relies on the fact that states which are mixed by Hadamard operators at any stage of the computation only differ by a phase. This property is a consequence of the structure of the initial state and of the QFT, based on controlled-phase operators and a single action of a Hadamard gate per qubit. The detail of our proof shows that Hadamard gates sort the probability distribution associated to the quantum state, whereas controlled-phase operators carry all the entanglement but are immaterial to majorization. We also prove that majorization in phase-estimation algorithms follows in a most natural way from unitary evolution, unlike its counterpart in Grover s algorithm.