咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Nash modification on toric sur... 收藏

Nash modification on toric surfaces

作     者:Duarte, Daniel 

作者机构:Univ Toulouse 3 Inst Math Toulouse F-31062 Toulouse 9 France 

出 版 物:《REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS》 (Revista Real Academia Ciencias Exactas, Fisicas Naturales - Serie A: Matematicas)

年 卷 期:2014年第108卷第1期

页      面:153-171页

核心收录:

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

基  金:CONACYT (Mexico) 

主  题:Toric surface Nash modification Combinatorial algorithm 

摘      要:It has been recently shown that the iteration of Nash modification on not necessarily normal toric varieties corresponds to a purely combinatorial algorithm on the generators of the semigroup associated to the toric variety. We will show that for tone surfaces this algorithm stops for certain choices of affine charts of the Nash modification. In addition, we give a bound on the number of steps required for the algorithm to stop in the cases we consider. Let C(x(1),x(2)) be the field of rational functions of a toric surface. Then our result implies that if nu : C(x(1),x(2)) - Gamma is any valuation centered on the toric surface and such that nu (x(1)) not equal lambda nu (x(2)) for all lambda epsilon R \ Q, then a finite iteration of Nash modification gives local uniformization along nu.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分