咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Renormalization-group and nume... 收藏

Renormalization-group and numerical analysis of a noisy Kuramoto-Sivashinsky equation in 1+1 dimensions

重正常化组和在 1+1 尺寸的吵闹的 Kuramoto-Sivashinskyequation 的数字分析

作     者:K. Ueno H. Sakaguchi M. Okamura 

作者机构:Research Institute for Applied Mechanics Kyushu University Kasuga Fukuoka 816-8580 Japan Department of Applied Science for Electronics and Materials Interdisciplinary Graduate School of Engineering Sciences Kyushu University Kasuga Fukuoka 816-8580 Japan 

出 版 物:《Physical Review E》 (物理学评论E辑:统计、非线性和软体物理学)

年 卷 期:2005年第71卷第4期

页      面:046138-046138页

核心收录:

学科分类:07[理学] 070203[理学-原子与分子物理] 0702[理学-物理学] 

主  题:LONG-WAVELENGTH PROPERTIES LARGE-SCALE PROPERTIES GROWING INTERFACES STOCHASTIC-MODEL TIME 

摘      要:The long-wavelength properties of a noisy Kuramoto-Sivashinsky (KS) equation in 1+1 dimensions are investigated by use of the dynamic renormalization group (RG) and direct numerical simulations. It is shown that the noisy KS equation is in the same universality class as the Kardar-Parisi-Zhang (KPZ) equation in the sense that they have scale invariant solutions with the same scaling exponents in the long-wavelength limit. The RG analysis reveals that the RG flow for the parameters of the noisy KS equation rapidly approach the KPZ fixed point with increasing strength of the noise. This is supplemented by numerical simulations of the KS equation with a stochastic noise, in which scaling behavior close to the KPZ scaling can be observed even in a moderate system size and time.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分