版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Maastricht Univ Dept Math NL-6200 MD Maastricht Netherlands Katholieke Univ Leuven Dept Appl Econ B-3000 Louvain Belgium
出 版 物:《RAIRO-OPERATIONS RESEARCH》 (法国自动化、信息与运筹学;运筹学)
年 卷 期:2002年第36卷第1期
页 面:53-71页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 07[理学] 070105[理学-运筹学与控制论] 0701[理学-数学]
主 题:primal-dual approximation algorithms packing-covering intervals
摘 要:We consider a special packing-covering pair of problems. The packing problem is a natural generalization of finding a (weighted) maximum independent set in an interval graph, the covering problem generalizes the problem of finding a (weighted) minimum clique cover in an interval graph. The problem pair involves weights and capacities;we consider the case of unit weights and the case of unit capacities. In each case we describe a simple algorithm that outputs a solution to the packing problem and to the covering problem that are within a factor of 2 of each other. Each of these results implies an approximative min-max result. For the general case of arbitrary weights and capacities we describe an LP-based (2 + epsilon)-approximation algorithm for the covering problem. Finally, we show that, unless P = NP, the covering problem cannot be approximated in polynomial time within arbitrarily good precision.