咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Mobility of Discrete Solitons ... 收藏

Mobility of Discrete Solitons in Quadratically Nonlinear Media

离散孤子流动性二次型非线性媒体

作     者:H. Susanto P. G. Kevrekidis R. Carretero-González B. A. Malomed D. J. Frantzeskakis 

作者机构:Department of Mathematics and Statistics University of Massachusetts Amherst Massachusetts 01003-4515 USA Nonlinear Dynamical Systems Group Department of Mathematics and Statistics and Computational Science Research Center San Diego State University San Diego California 92182-7720 USA Department of Physical Electronics School of Electrical Engineering Faculty of Engineering Tel Aviv University Tel Aviv 69978 Israel Department of Physics University of Athens Panepistimiopolis Zografos Athens 15784 Greece 

出 版 物:《Physical Review Letters》 (Phys Rev Lett)

年 卷 期:2007年第99卷第21期

页      面:214103-214103页

核心收录:

学科分类:07[理学] 0702[理学-物理学] 

主  题:Solitons 

摘      要:We study the mobility of solitons in lattices with quadratic (χ(2), alias second-harmonic-generating) nonlinearity. Using the notion of the Peierls-Nabarro potential and systematic numerical simulations, we demonstrate that, in contrast with their cubic (χ(3)) counterparts, the discrete quadratic solitons are mobile not only in the one-dimensional (1D) setting, but also in two dimensions (2D), in any direction. We identify parametric regions where an initial kick applied to a soliton leads to three possible outcomes: staying put, persistent motion, or destruction. On the 2D lattice, the solitons survive the largest kick and attain the largest speed along the diagonal direction.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分