咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Correction of Visual Perceptio... 收藏

Correction of Visual Perception Based on Neuro-Fuzzy Learning for the Humanoid Robot TEO

基于为类人动物机器人 TEO 的 Neuro 模糊的学习的视觉感觉的修正

作     者:Hernandez-Vicen, Juan Martinez, Santiago Miguel Garcia-Haro, Juan Balaguer, Carlos 

作者机构:Univ Carlos III Madrid Syst Engn & Automat Dept Avd Univ 30 Madrid 28903 Spain 

出 版 物:《SENSORS》 (Sensors)

年 卷 期:2018年第18卷第4期

页      面:972-972页

核心收录:

学科分类:0710[理学-生物学] 071010[理学-生物化学与分子生物学] 0808[工学-电气工程] 07[理学] 0804[工学-仪器科学与技术] 0703[理学-化学] 

基  金:RoboCity2030-III-CM project (Robotica aplicada a la mejora de la calidad de vida de los ciudadanos. fase III) [S2013/MIT-2748] Programas de Actividades I + D en la Comunidad de Madrid EU 

主  题:humanoid robot artificial vision non-grasping manipulation Neuro-Fuzzy filter distortion correction 

摘      要:New applications related to robotic manipulation or transportation tasks, with or without physical grasping, are continuously being developed. To perform these activities, the robot takes advantage of different kinds of perceptions. One of the key perceptions in robotics is vision. However, some problems related to image processing makes the application of visual information within robot control algorithms difficult. Camera-based systems have inherent errors that affect the quality and reliability of the information obtained. The need of correcting image distortion slows down image parameter computing, which decreases performance of control algorithms. In this paper, a new approach to correcting several sources of visual distortions on images in only one computing step is proposed. The goal of this system/algorithm is the computation of the tilt angle of an object transported by a robot, minimizing image inherent errors and increasing computing speed. After capturing the image, the computer system extracts the angle using a Fuzzy filter that corrects at the same time all possible distortions, obtaining the real angle in only one processing step. This filter has been developed by the means of Neuro-Fuzzy learning techniques, using datasets with information obtained from real experiments. In this way, the computing time has been decreased and the performance of the application has been improved. The resulting algorithm has been tried out experimentally in robot transportation tasks in the humanoid robot TEO (Task Environment Operator) from the University Carlos III of Madrid.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分