咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Spatial Analyticity of Solutio... 收藏

Spatial Analyticity of Solutions to Keller-Segel Equation of Parabolic-Elliptic Type

寓言椭圆形的类型的 Keller-Segel 方程的答案的空间 Analyticity

作     者:Yang Minghua Sun, Jinyi 

作者机构:Jiangxi Univ Finance & Econ Sch Informat Technol Nanchang 330032 Jiangxi Peoples R China Northwest Normal Univ Coll Math & Stat Lanzhou 730070 Gansu Peoples R China 

出 版 物:《RESULTS IN MATHEMATICS》 (Results Math.)

年 卷 期:2017年第72卷第4期

页      面:1653-1681页

核心收录:

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

基  金:National Natural Science Foundation of China 

主  题:Keller-Segel equation of parabolic-elliptic type Fourier-Besov spaces modulation spaces Gevrey regularity 

摘      要:In this article, spatial analyticity of solutions to Keller-Segel equation of parabolic-elliptic type with generalized dissipation is presented. First, we prove the analyticity of local solutions to system with large rough initial data in Modulation spaces with . Secondly, we establish the analyticity of solutions to the system with initial data in critical Fourier-Besov spaces with (or ) and , the main method is so-called Gevrey estimates, which is motivated by the works of Foias and Temam (Foias in Contemp Math 208:151-180, 1997). In the critical case that , we prove global Gevrey analyticity for small initial data in critical Fourier-Besov spaces with and . The results of us particularly imply temporal decay rates of higher Fourier-Besov norms of solutions.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分