咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Cartesian beams 收藏

Cartesian beams

笛卡儿的横梁

作     者:Bandres, Miguel A. Gutierrez-Vega, Julio C. 

作者机构:Tecnol Monterrey Photon Math Opt Lab Monterrey 64849 Mexico CALTECH Pasadena CA 91125 USA 

出 版 物:《OPTICS LETTERS》 (光学快报)

年 卷 期:2007年第32卷第23期

页      面:3459-3461页

核心收录:

学科分类:070207[理学-光学] 07[理学] 08[工学] 0803[工学-光学工程] 0702[理学-物理学] 

主  题:ABCD transforms Beam structure First order optics Gaussian beams Optical fields Optical systems 

摘      要:A new and very general beam solution of the paraxial wave equation in Cartesian coordinates is presented. We call such a field a Cartesian beam. The complex amplitude of the Cartesian beams is described by either the parabolic cylinder functions or the confluent hypergeometric functions, and the beams are characterized by three parameters that are complex in the most general situation. The propagation through complex ABCD optical systems and the conditions for square integrability are studied in detail. Applying the general expression of the Cartesian beams, we also derive two new and meaningful beam structures that, to our knowledge, have not yet been reported in the literature. Special cases of the Cartesian beams are the standard, elegant, and generalized Hermite-Gauss beams, the cosine-Gauss beams, the Lorentz beams, and the fractional order beams. (c) 2007 Optical Society of America.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分