咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Robust stability and H-infinit... 收藏

Robust stability and H-infinity control for uncertain discrete-time Markovian jump singular systems

Robust stability and H-infinity control for uncertain discrete-time Markovian jump singular systems

作     者:Shuping MA Chenghui ZHANG Xinzhi LIU 

作者机构:School of Mathematics and System Science Shandong University Jinan Shandong 250100 China School of Computer Science and Technology Shandong University Jinan Shandong 250061 China School of Control and Engineering Shandong University Jinan Shandong 250061 China Department of Applied Mathematics University of Waterloo Waterloo Ontario N2L 3G1 Canada 

出 版 物:《控制理论与应用(英文版)》 (控制理论与应用)

年 卷 期:2008年第6卷第2期

页      面:133-140页

核心收录:

学科分类:0711[理学-系统科学] 07[理学] 081104[工学-模式识别与智能系统] 08[工学] 0811[工学-控制科学与工程] 071102[理学-系统分析与集成] 081103[工学-系统工程] 

基  金:Postdoctoral Science Foundation of China (No. 20060400980) Postdoctoral Science Foundation of Shandong Province(No. 200603015) National Science Foundation of China (No. 10671112) 

主  题:Discrete-time singular system Markovian jump system Robust stability and stabilization H-infinitycontrol Linear matrix inequality(LMI) 

摘      要:The robust stability and stabilization, and H-infinity control problems for discrete-time Markovian jump singular systems with parameter uncertainties are discussed. Based on the restricted system equivalent (r.s.e.) transformation and by introducing new state vectors, the singular system is transformed into a discrete-time Markovian jump standard linear system, and the linear matrix inequality (LMI) conditions for the discrete-time Markovian jump singular systems to be regular, causal, stochastically stable, and stochastically stable with 7- disturbance attenuation are obtained, respectively. With these conditions, the robust state feedback stochastic stabilization problem and H-infinity control problem are solved, and the LMI conditions are obtained. A numerical example illustrates the effectiveness of the method given in the oaoer.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分