咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >BINOMIALS WHOSE DILATIONS GENE... 收藏

BINOMIALS WHOSE DILATIONS GENERATE <i>H</i><SUP>2</SUP>(D)

作     者:Nikolski, N. K. 

作者机构:Univ Bordeaux Inst Math Bordeaux France St Petersburg State Univ Chebyshev Lab St Petersburg Russia 

出 版 物:《ST PETERSBURG MATHEMATICAL JOURNAL》 (St. Petersburg Math. J.)

年 卷 期:2018年第29卷第6期

页      面:979-992页

核心收录:

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

基  金:project "Spaces of analytic functions and singular integrals " RSF [14-41-00010] 

主  题:Hardy spaces completeness of dilations Riesz basis Hilbert multidisc Bohr transform binomial functions 

摘      要:This note is about the completeness of the function families {z(n)(lambda-z(n))(N ): n = 1,2, . . .} in the Hardy space H-0(2)(D), and some related questions. It is shown that for vertical bar lambda vertical bar R(N) the family is complete in H-0(2)(D) (and often is a Riesz basis of H-0(2)), whereas for vertical bar lambda vertical bar infinity). Several results are also obtained for more general binomials {z(n)(1-1/lambda z(n))(nu) : n = 1, 2, ... where vertical bar lambda vertical bar = 1 and nu is an element of C.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分