版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Univ Bordeaux Inst Math Bordeaux France St Petersburg State Univ Chebyshev Lab St Petersburg Russia
出 版 物:《ST PETERSBURG MATHEMATICAL JOURNAL》 (St. Petersburg Math. J.)
年 卷 期:2018年第29卷第6期
页 面:979-992页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:project "Spaces of analytic functions and singular integrals " RSF [14-41-00010]
主 题:Hardy spaces completeness of dilations Riesz basis Hilbert multidisc Bohr transform binomial functions
摘 要:This note is about the completeness of the function families {z(n)(lambda-z(n))(N ): n = 1,2, . . .} in the Hardy space H-0(2)(D), and some related questions. It is shown that for vertical bar lambda vertical bar R(N) the family is complete in H-0(2)(D) (and often is a Riesz basis of H-0(2)), whereas for vertical bar lambda vertical bar infinity). Several results are also obtained for more general binomials {z(n)(1-1/lambda z(n))(nu) : n = 1, 2, ... where vertical bar lambda vertical bar = 1 and nu is an element of C.