咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Affine Nonexpansive Operators,... 收藏

Affine Nonexpansive Operators, Attouch-Thera Duality and the Douglas-Rachford Algorithm

作     者:Bauschke, Heinz H. Lukens, Brett Moursi, Walaa M. 

作者机构:Univ British Columbia Math Kelowna BC V1V 1V7 Canada 3990 Lansdowne Rd Armstrong BC V0E 1B3 Canada Mansoura Univ Math Dept Fac Sci Mansoura 35516 Egypt 

出 版 物:《SET-VALUED AND VARIATIONAL ANALYSIS》 (集值分析)

年 卷 期:2017年第25卷第3期

页      面:481-505页

核心收录:

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

基  金:Natural Sciences and Engineering Research Council of Canada Canada Research Chair Program 

主  题:Affine mapping Attouch-Thera duality Douglas-Rachford algorithm Linear convergence Maximally monotone operator Nonexpansive mapping Paramonotone operator Strong convergence Toeplitz matrix Tridiagonal matrix 

摘      要:The Douglas-Rachford splitting algorithm was originally proposed in 1956 to solve a system of linear equations arising from the discretization of a partial differential equation. In 1979, Lions and Mercier brought forward a very powerful extension of this method suitable to solve optimization problems. In this paper, we revisit the original affine setting. We provide a powerful convergence result for finding a zero of the sum of two maximally monotone affine relations. As a by product of our analysis, we obtain results concerning the convergence of iterates of affine nonexpansive mappings as well as Attouch-Th,ra duality. Numerous examples are presented.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分