咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >An automatic multi-thread imag... 收藏

An automatic multi-thread image segmentation embedded system for surface plasmon resonance sensor

一自动多线程图象分割为表面电浆子的嵌入的系统回声传感器

作     者:Wang, Chao Ko, Mong-Chi Chen, Yi-Ming Chen, Le-Qun Lin, Chii-Wann 

作者机构:Natl Taiwan Univ Inst Biomed Elect & Bioinformat Taipei 10617 Taiwan Natl Taiwan Univ Inst Biomed Engn Taipei 10617 Taiwan Natl Taiwan Univ Inst Appl Mech Taipei 10617 Taiwan 

出 版 物:《SENSORS AND ACTUATORS A-PHYSICAL》 (传感器与执行机构,A辑:物理传感器)

年 卷 期:2019年第285卷

页      面:603-612页

核心收录:

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 0808[工学-电气工程] 08[工学] 0804[工学-仪器科学与技术] 

基  金:Ministry of Science and Technology of R.O.C. [MOST 106-2221-E-002-059-MY2  MOST 105-2221-E-002 -016 -MY3] 

主  题:Surface plasmon resonance (SPR) Optical sensor Biosensor Image segmentation Watershed algorithm 

摘      要:In order to reduce the uncertainties associated with manual selection of regions of interest (ROIs) commonly used in Surface Plasmon Resonance (SPR) imaging system, we proposed and implemented an automatic image segmentation method in an embedded system to facilitate the potential real-time applications. Intuitive marker-controlled watershed algorithm is developed to segment ROIs (reaction, blank, and background regions) from images acquired from an experimental image SPR system. The marker assignment algorithms and pre-processing algorithms are executed in parallel by multi-threading programming on the multi-core embedded system to both real-time and good quality of segmentation. This method exhibited a good robustness in a series of ROIs segmentation test. Furthermore, the intensity response from triplicate detection of glucose standard solutions indicated a good reproducibility of data. The linear range was from 2.5 mg/mL to 20.4 mg/mL, with a correlation coefficient (R-2) of 0.999 and sensitivity of 2.69 a.u./mg/mL. In conclusion, the proposed automatic image segmentation method effectively makes the measurement more precise and simplified. (C) 2018 Elsevier B.V. All rights reserved.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分