版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Univ Jaen Dept Estadist & IO Paraje Las Lagunillas S-N Jaen 23071 Spain Univ Granada Dept Estadist & IO Granada Spain
出 版 物:《INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS》 (国际计算机数学杂志)
年 卷 期:2020年第97卷第1-2期
页 面:263-274页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:European Regional Development Fund, ERDF, (MTM2017-84199-P) Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España, MINECO Agencia Estatal de Investigación, AEI
主 题:Distributed fusion filter multi-sensor systems random parameter matrices correlated noises random delays
摘 要:This paper is concerned with the distributed fusion estimation problem for discrete-time linear stochastic systems with measurements coming from different sensors and correlated random parameter matrices in both the state and measurement equations. At each sampling time, the random state transition parameter matrices are assumed to be correlated at the same sampling time with the measurement random parameter matrices of each sensor. Moreover, the random parameter matrices in the observation equations are one-step auto-correlated and cross-correlated between the different sensors. The additive noises are also assumed to be correlated. Under these assumptions, the distributed fusion filter is designed as the matrix-weighted linear combination of the local least-squares linear filters obtained at every single sensor, using the linear minimum variance optimality criterion. A numerical simulation example considering a two-sensor system with randomly delayed measurements is used to illustrate the applicability of multi-sensor systems with correlated random parameter matrices and analyse the performance of the proposed filtering estimators.