咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >A new Kriging-Bat Algorithm fo... 收藏

A new Kriging-Bat Algorithm for solving computationally expensive black-box global optimization problems

为解决计算地昂贵的黑盒子的全球优化问题的一个新 Kriging 蝙蝠算法

作     者:Saad, Abdulbaset Dong, Zuomin Buckham, Brad Crawford, Curran Younis, Adel Karimi, Meysam 

作者机构:Univ Victoria Mech Engn Dept Victoria BC Canada Australian Coll Kuwait Mech Engn Dept Kuwait Kuwait 

出 版 物:《ENGINEERING OPTIMIZATION》 (工程优选)

年 卷 期:2019年第51卷第2期

页      面:265-285页

核心收录:

学科分类:1201[管理学-管理科学与工程(可授管理学、工学学位)] 08[工学] 

基  金:Natural Science and Engineering Research Council of Canada Libyan Ministry of Education 

主  题:Global optimization Bat Algorithm Kriging model computation expensive black-box problems 

摘      要:Many global optimization (GO) algorithms have been introduced in recent decades to deal with the Computationally Expensive Black-Box (CEBB) optimization problems. The high number of objective function evaluations, required by conventional GO methods, is prohibitive or at least inconvenient for practical design applications. In this work, a new Kriging-Bat algorithm (K-BA) is introduced for solving CEBB problems with further improved search efficiency and robustness. A Kriging surrogate model (SM) is integrated with the Bat Algorithm (BA) to find the global optimum using substantially reduced number of evaluations of the computationally expensive objective function. The new K-BA algorithm is tested and compared with other well-known GO algorithms, using a set of standard benchmark problems with 2 to 16 design variables, as well as a real-life engineering optimization application, to determine its search capability, efficiency and robustness. Results of the comprehensive tests demonstrated the suitability and superior capability of the new K-BA.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分