咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >A fuzzy polynomial fitting and... 收藏

A fuzzy polynomial fitting and mathematical programming approach for enhancing the accuracy and precision of productivity forecasting

模糊多项式试穿和数学编程为提高预报的生产率的精确性和精确来临

作     者:Chen, Toly Ou, Chungwei Lin, Yu-Cheng 

作者机构:Natl Chiao Tung Univ Dept Ind Engn & Management 1001 Univ Rd Hsinchu Taiwan Chang Yuan Christian Univ Dept Ind & Syst Engn 200 Chung Pei Rd Taoyuan Taiwan Overseas Chinese Univ Dept Comp Aided Ind Design 100 Chiao Kung Rd Taichung Taiwan 

出 版 物:《COMPUTATIONAL AND MATHEMATICAL ORGANIZATION THEORY》 (计算与数学的组织理论)

年 卷 期:2019年第25卷第2期

页      面:85-107页

核心收录:

学科分类:07[理学] 0701[理学-数学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 070101[理学-基础数学] 

基  金:Ministry of Science and Technology  Taiwan 

主  题:Productivity Uncertainty Polynomial fitting Mathematical programming Forecasting 

摘      要:Forecasting future productivity is a critical task to every organization. However, the existing methods for productivity forecasting have two problems. First, the logarithmic or log-sigmoid value, rather than the original value, of productivity is dealt with. Second, the objective functions are not consistent with those adopted in practice. To address these problems, a fuzzy polynomial fitting and mathematical programming (FPF-MP) approach are proposed in this study. The FPF-MP approach solves two polynomial programming problems, based on the original value of productivity, in two steps to optimize accuracy and precision of forecasting future productivity, respectively. A real case was adopted to validate the effectiveness of the proposed methodology. According to the experimental results, the proposed FPF-MP approach outperformed six existing methods in improving the forecasting accuracy and precision.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分