版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Damietta Univ Dept Comp Dumyat Egypt Zagazig Univ Dept Math Fac Sci Zagazig Egypt Univ Guadalajara Dept Ciencias Computac Guadalajara Mexico
出 版 物:《JOURNAL OF ELECTRONIC IMAGING》 (电子成像杂志)
年 卷 期:2018年第27卷第6期
页 面:063008-063008页
核心收录:
学科分类:0808[工学-电气工程] 1002[医学-临床医学] 0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 0702[理学-物理学]
主 题:whale optimization algorithm particle swarm optimization hybrid swarm techniques image segmentation multilevel thresholding
摘 要:We introduce an alternative hybrid swarm algorithm for image segmentation that employs multilevel thresholding techniques. For the hybridization, we have combined the whale optimization algorithm (WOA) and the particle swarm optimization (PSO). The proposed method is called WOAPSO, and it operates in a cooperative environment, where the initial population is divided into two subpopulations (the first subpopulation is assigned for WOA and the other is assigned for PSO). Then, the WOA and the PSO operate in parallel during the iterative process to update the solutions and the best solution is selected from the union of the updated subpopulations according to the objective function. Here, two objective functions are used, the Otsu s method and the fuzzy entropy method. These functions evaluate the quality of the thresholds generated by the WOAPSO considering the variance and the entropy of the classes where the pixels are cataloged. The experimental results and comparisons provide evidence of the ability of the proposed WOAPSO algorithm to reduce the time complexity without affecting the accuracy of the solutions. (C) 2018 SPIE and IS&T