咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Image segmentation via multile... 收藏

Image segmentation via multilevel thresholding using hybrid optimization algorithms

经由用混合优化算法的 multilevel thresholding 的图象分割

作     者:Ewees, Ahmed A. Abd Elaziz, Mohamed Oliva, Diego 

作者机构:Damietta Univ Dept Comp Dumyat Egypt Zagazig Univ Dept Math Fac Sci Zagazig Egypt Univ Guadalajara Dept Ciencias Computac Guadalajara Mexico 

出 版 物:《JOURNAL OF ELECTRONIC IMAGING》 (电子成像杂志)

年 卷 期:2018年第27卷第6期

页      面:063008-063008页

核心收录:

学科分类:0808[工学-电气工程] 1002[医学-临床医学] 0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 0702[理学-物理学] 

主  题:whale optimization algorithm particle swarm optimization hybrid swarm techniques image segmentation multilevel thresholding 

摘      要:We introduce an alternative hybrid swarm algorithm for image segmentation that employs multilevel thresholding techniques. For the hybridization, we have combined the whale optimization algorithm (WOA) and the particle swarm optimization (PSO). The proposed method is called WOAPSO, and it operates in a cooperative environment, where the initial population is divided into two subpopulations (the first subpopulation is assigned for WOA and the other is assigned for PSO). Then, the WOA and the PSO operate in parallel during the iterative process to update the solutions and the best solution is selected from the union of the updated subpopulations according to the objective function. Here, two objective functions are used, the Otsu s method and the fuzzy entropy method. These functions evaluate the quality of the thresholds generated by the WOAPSO considering the variance and the entropy of the classes where the pixels are cataloged. The experimental results and comparisons provide evidence of the ability of the proposed WOAPSO algorithm to reduce the time complexity without affecting the accuracy of the solutions. (C) 2018 SPIE and IS&T

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分