版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Tianjin Univ Sch Microelect 92 Weijin Rd Tianjin 300072 Peoples R China Tianjin Key Lab Imaging & Sensing Microelect Tech 92 Weijin Rd Tianjin 300072 Peoples R China Guangdong Univ Technol Sch Comp Guangzhou 510006 Guangdong Peoples R China
出 版 物:《SENSORS》 (传感器)
年 卷 期:2018年第18卷第12期
页 面:4232-4232页
核心收录:
学科分类:0710[理学-生物学] 071010[理学-生物化学与分子生物学] 0808[工学-电气工程] 07[理学] 0804[工学-仪器科学与技术] 0703[理学-化学]
基 金:National Natural Science Foundation of China [61434004, 61604107] Tianjin artificial intelligence science and technology project [17ZXRGGX00040] Tianjin Research Program of Application Foundation and Advanced Technology [17JCYBJC16000]
主 题:interspike time interval high-speed scanning sequential format non-uniformity coefficient matrix calibration algorithm
摘 要:In this paper, the non-ideal factors, which include spatial noise and temporal noise, are analyzed and suppressed in the high-speed spike-based image sensor, which combines the high-speed scanning sequential format with the method that uses the interspike time interval to indicate the scene information. In this imager, spatial noise contains device mismatch, which results in photo response non-uniformity (PRNU) and the non-uniformity of dark current. By multiplying the measured coefficient matrix the photo response non-uniformity is suppressed, and the non-uniformity of dark current is suppressed by correcting the interspike time interval based on the time interval of dark current. The temporal noise is composed of the shot noise and thermal noise. This kind of noise can be eliminated when using the spike frequency to restore the image. The experimental results show that, based on the spike frequency method, the standard deviation of the image decreases from 18.4792 to 0.5683 in the uniform bright light by using the calibration algorithm. While in the relatively uniform dark condition, the standard deviation decreases from 1.5812 to 0.4516. Based on interspike time interval method, because of time mismatch and temporal noise, the standard deviation of the image changes from 27.4252 to 27.4977 in the uniform bright light by using the calibration algorithm. While in the uniform dark condition, the standard deviation decreases from 2.361 to 0.3678.