版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:GGSIPU USICT New Delhi India
出 版 物:《JOURNAL OF INTELLIGENT & FUZZY SYSTEMS》 (智能与模糊系统杂志)
年 卷 期:2018年第35卷第5期
页 面:5203-5215页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)]
主 题:Ant Colony Optimization cuckoo search algorithm firefly algorithm genetic algorithm moth flame algorithm meta-heuristics object-oriented state transition diagram
摘 要:Software testing contributes a strategic role in software development, as it underrates the cost of software development. Software testing can be categorized as: testing via code or white box testing, testing via specification or black box and testing via UML models. To minimize the issues associated with object-oriented software testing, testing via UML models is used. It is a procedure which derives test paths from a Unified Modelling Language (UML) model which describes the functional aspects of Software Under Test (SUT). Thus, test cases have been produced in the design phase itself, which then reduces the corresponding cost and effort of software development. This early discovery of faults makes the life of software developer much easier. Also, there is a strong need to optimize the generated test cases. The main goal of optimization is to spawn reduced and unique test cases. To accomplish the same, in this research, a nature-inspired meta-heuristic, Moth Flame Optimization Algorithm has been offered for model based testing of software based on object orientation. Also, the generated test cases have been compared with already explored meta-heuristics, namely, Firefly Algorithm and Ant Colony Optimization Algorithm. The outcomes infer that for large object-oriented software application, Moth Flame Optimization Algorithm creates optimized test cases as equated to other algorithms.