版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Panjab Univ Natl Inst Tech Teachers Training & Res Dept Elect Engn Chandigarh 160019 India
出 版 物:《JOURNAL OF INTELLIGENT & FUZZY SYSTEMS》 (智能与模糊系统杂志)
年 卷 期:2018年第35卷第5期
页 面:5099-5109页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)]
主 题:sEMG signal pattern recognition time domain features differentiation technique classification accuracy
摘 要:Selection of suitable features plays a pivotal role in Electromyography pattern recognition (EMG-PR) based system designing. Time-domain features are widely used in EMG-PR based application and show improved proficiency in the development of rehabilitation robotics. Even though, the performance of existing features is not satisfactory. In this study, we proposed four novel time-domain features obtained by using first-order differentiation of original surface electromyogram (sEMG) signals feature. Here, sEMG signals were acquired from ten healthy volunteers with the help of myotrace400 device for six different arm movements. The data acquisition and pre-processing stage were carried out followed by the feature extraction process for better classification results. Four different classifiers namely, k-nearest neighbors (KNN), Linear discriminant analysis (LDA), Quadratic discriminant analysis (QDA) and Medium tree (MT) classifiers were utilized for the performance evaluation of proposed and conventional features. Experimental results demonstrate that proposed features extracted by using first-order differentiation of sEMG signals feature attained better classification accuracy with MT classifier as compared to the feature extracted from original sEMG signals with the conventional features. The accuracy of proposed feature based on first-order differentiation improved up to 6%. The results indicate that proposed features may be considered for developing the EMG-PR based system designing.