咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Community discovery method bas... 收藏

Community discovery method based on complex network of data fusion based on the super network perspective

作     者:Pei, Li 

作者机构:School of Computer Science & Technology Xi‘an University of Posts and Telecommunications Xi‘an China Shaanxi Key Laboratory of Network Data Intelligent Processing Xi‘an University of Posts and Telecommunications Xi‘an China Ministry of Education Key Lab For Intelligent Networks and Network Security Xi‘an Jiaotong University Xi‘an China 

出 版 物:《International Journal of Computers and Applications》 (Int J Comput Appl)

年 卷 期:2021年第43卷第4期

页      面:383-390页

核心收录:

学科分类:1201[管理学-管理科学与工程(可授管理学、工学学位)] 08[工学] 0835[工学-软件工程] 0714[理学-统计学(可授理学、经济学学位)] 0701[理学-数学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主  题:Computational efficiency 

摘      要:To enhance the computational efficiency and precision of community discovery, a community discovery algorithm with the mixed label based on the minimum description length (MDI) of information compression is proposed in this paper. Firstly, the community detection is converted to the information compression problem of seeking for an effective network structure and the quality evaluation function is constructed based on the MDL criterion. Secondly, the community discovery algorithm with heuristic mixed label movement is constructed based on the label node movement algorithm and Louvain community addition algorithm so as to reduce the quality evaluation function. Finally, the simulation experiment in the standard test set and API capture Sina microblog dataset shows that the proposed algorithm is superior to the selected comparison algorithm in computational efficiency and precision. © 2018 Informa UK Limited, trading as Taylor & Francis Group.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分