咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >非凸半定规划的鞍点存在性研究 收藏

非凸半定规划的鞍点存在性研究

The Study of the Existence of Saddle Point for Nonconvex Semidefinite Programming Problems

作     者:李永玲 罗洪林 向彦宁 LI Yongling;LUO Honglin;XIANG Yanning

作者机构:重庆师范大学数学学院重庆401331 

出 版 物:《重庆师范大学学报(自然科学版)》 (Journal of Chongqing Normal University:Natural Science)

年 卷 期:2015年第32卷第6期

页      面:9-14页

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 07[理学] 070105[理学-运筹学与控制论] 0701[理学-数学] 

基  金:国家自然科学基金(No.11431004) 

主  题:非凸半定规划 鞍点 广义KKT条件 不变凸 

摘      要:主要利用矩阵分析的谱分解、Frobenius内积及其相关性质,凸分析的凸集分离定理来研究非凸半定规划问题的鞍点的存在性,通过3种不同的方式给出并证明了鞍点存在的一些充分、必要以及充分必要条件。首先,利用一个不等式系统给出了与文献[1]中的对偶定理等价的一个鞍点存在的充分必要条件。然后,给出了广义的KKT条件,并在不变凸性的假设下,证明了广义KKT条件是鞍点存在的一个充分条件;若x∈int C,则广义KKT条件是鞍点存在的一个必要条件。最后,定义了一个扰动函数ν,并在非凸半定规划问题的最优解存在的假设下,利用此扰动函数给出了鞍点存在的一个充分必要条件:若非凸半定规划问题的最优解存在,则对偶可达且无对偶间隙等价于扰动函数ν的上图在点(0,ν(0))处存在支撑超平面。

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分