版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:UNIV BRITISH COLUMBIAFAC COMMERCE & BUSINESS ADMVANCOUVER V6T 1W5BCCANADA COLUMBIA UNIVDEPT IND ENGN & OPERAT RESNEW YORKNY 10027
出 版 物:《OPERATIONS RESEARCH LETTERS》 (运筹学快报)
年 卷 期:1992年第11卷第5期
页 面:303-308页
核心收录:
学科分类:1201[管理学-管理科学与工程(可授管理学、工学学位)] 07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:National Science Foundation, NSF, (DDM-8922712) National Science Foundation, NSF Office of Naval Research, ONR, (N00014-90-J-1649) Office of Naval Research, ONR Iran Telecommunication Research Center, ITRC, (CDR 84-21402) Iran Telecommunication Research Center, ITRC
主 题:COMPUTATIONAL COMPLEXITY NETWORKS GRAPHS TELECOMMUNICATIONS WORST-CASE ANALYSIS
摘 要:Given a graph G = (V, E), positive integers D Absolute value of V and B, the Minimum-Cardinality-Bounded-Diameter (MCBD) Edge Addition Problem is to find a superset of edges E superset-or-equal-to E such that the graph G = (V, E ) has diameter no greater than D and the total number of the new edges is minimized, while the Bounded-Cardinality-Minimum-Diameter (BCMD) Edge Addition Problem is to find a superset of edges E superset-or-equal-to E with \E \E\ less-than-or-equal-to B such that the diameter of G = (V, E ) is minimized. We prove that the MCBD case is NP-hard even when D = 2 and describe a polynomial heuristic for BCMD with a constant worst-case bound. We also show that finding a polynomial heuristic for MCBD with a constant worst-case bound is no easier than finding such a heuristic for the dominating set problem.