咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Learning parities in the mista... 收藏

Learning parities in the mistake-bound model

在错误界限的学习同等值当模特儿

作     者:Buhrman, Harry Garcia-Soriano, David Matsliah, Arie 

作者机构:CWI Amsterdam Amsterdam Netherlands 

出 版 物:《INFORMATION PROCESSING LETTERS》 (信息处理快报)

年 卷 期:2010年第111卷第1期

页      面:16-21页

核心收录:

学科分类:08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主  题:On-line algorithms Parities Mistake-bound Attribute-efficient learning 

摘      要:We study the problem of learning parity functions that depend on at most k variables (k-parities) attribute-efficiently in the mistake-bound model. We design a simple, deterministic, polynomial-time algorithm for learning k-parities with mistake bound O(n(1-1/k)). This is the first polynomial-time algorithm to learn omega(1)-parities in the mistake-bound model with mistake bound o(n). Using the standard conversion techniques from the mistake-bound model to the PAC model, our algorithm can also be used for learning k-parities in the PAC model. In particular, this implies a slight improvement over the results of Klivans and Servedio (2004) [1] for learning k-parities in the PAC model. We also show that the (O) over tilde (n(k/2)) time algorithm from Klivans and Servedio (2004) [1] that PAC-learns k-parities with sample complexity O(k log n) can be extended to the mistake-bound model. (c) 2010 Elsevier B.V. All rights reserved.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分