咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >A quantum inspired gravitation... 收藏

A quantum inspired gravitational search algorithm for numerical function optimization

量为数字功能优化启发了重力的搜索算法

作     者:Soleimanpour-moghadam, Mohadeseh Nezamabadi-pour, Hossein Farsangi, Malihe M. 

作者机构:Shahid Bahonar Univ Kerman Dept Elect Engn Kerman Iran 

出 版 物:《INFORMATION SCIENCES》 (信息科学)

年 卷 期:2014年第267卷

页      面:83-100页

核心收录:

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主  题:Swarm intelligence Gravitational search algorithm Quantum computing Numerical function optimization 

摘      要:Gravitational search algorithm (GSA) is a swarm intelligence optimization algorithm that shares many similarities with evolutionary computation techniques. However, the GSA is driven by the simulation of a collection of masses which interact with each other based on the Newtonian gravity and laws of motion. Inspired by the classical GSA and quantum mechanics theories, this work presents a novel GSA using quantum mechanics theories to generate a quantum-inspired gravitational search algorithm (QIGSA). The application of quantum mechanics theories in the proposed QIGSA provides a powerful strategy to diversify the algorithm s population and improve its performance in preventing premature convergence to local optima. The simulation results and comparison with nine state-of-the-art algorithms confirm the effectiveness of the QIGSA in solving various benchmark optimization functions.(C) 2013 Elsevier Inc. All rights reserved.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分