版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Univ S Pacific Dept Technol Suva Fiji
出 版 物:《IEE PROCEEDINGS-COMPUTERS AND DIGITAL TECHNIQUES》 (IEE Proc Comput Digital Tech)
年 卷 期:2001年第148卷第2期
页 面:63-70页
核心收录:
主 题:Boolean functions computational complexity polarity selection Information theory Optimisation techniques Reed-Muller codes minimisation method Computational complexity heuristic method minimisation fixed polarity Reed-Muller expansions encoding Reed-Muller tree-based minimisation completely specified Boolean systems conceptual framework Formal logic coding method Codes Boolean system disjoint sum Karpovsky's complexity estimates
摘 要:A heuristic method for the determination of optimum or near-optimum fixed polarity Reed-Muller (FPRM) representation of multiple output, completely specified Boolean systems is presented. The Reed-Muller (RM) tree representation forms the conceptual framework for the method, which involves manipulations of arrays of cubes. A coding method that is well adapted to RM tree representation is presented. The minimisation method takes as input a disjoint sum of cubes representation of the Boolean system. Using Karpovsky s complexity estimates as the basis for polarity selection, the method obtains the FPRM expansion by generating in one run an optimum or near optimum Reed-Muller tree representation.