版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Univ Med Ctr Rotterdam Erasmus MC Dept Publ Hlth NL-3000 CA Rotterdam Netherlands
出 版 物:《COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE》 (生物医学的计算机方法与程序)
年 卷 期:2008年第91卷第3期
页 面:185-190页
核心收录:
学科分类:0831[工学-生物医学工程(可授工学、理学、医学学位)] 1001[医学-基础医学(可授医学、理学学位)] 0812[工学-计算机科学与技术(可授工学、理学学位)] 10[医学]
主 题:microsimulation infectious disease computation time leprosy mumps
摘 要:Microsimulation of infectious diseases requires simulation of many life histories of interacting individuals. In particular, relatively rare infections such as leprosy need to be studied in very large populations. Computation time increases disproportionally with the size of the simulated population. We present a novel method, MUSIDH, an acronym for multiple use of simulated demographic histories, to reduce computation time. Demographic history refers to the processes of birth, death and all other demographic events that should be unrelated to the natural course of an infection, thus non-fatal infections. MUSIDH attaches a fixed number of infection histories to each demographic history, and these infection histories interact as if being the infection history of separate individuals. With two examples, mumps and leprosy, we show that the method can give a factor 50 reduction in computation time at the cost of a small loss in precision. The largest reductions are obtained for rare infections with complex demographic histories. (C) 2008 Elsevier Ireland Ltd. All rights reserved.