版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Virginia Tech Dept Business Informat Technol Blacksburg VA 24061 USA
出 版 物:《ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE》 (人工智能的工程应用)
年 卷 期:2004年第17卷第6期
页 面:589-598页
核心收录:
学科分类:0808[工学-电气工程] 08[工学] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
主 题:code-division multiple-access dynamic channel allocation genetic algorithm grouping genetic algorithm microcell sectorization wireless communication networks
摘 要:The number of wireless users has steadily increased over the last decade, leading to the need for methods that efficiently use the limited bandwidth available. Reducing the size of the cells in a cellular network increases the rate of frequency reuse or channel reuse, thus increasing the network capacity. The drawback of this approach is increased costs associated with installation and coordination of the additional base stations. A code-division multiple-access network where the base stations are connected to the central station by fiber has been proposed to reduce the installation costs. To reduce the coordination costs and the number of handoffs, sectorization (grouping) of the cells is suggested. We propose a dynamic sectorization of the cells, depending on the current sectorization and the time-varying traffic. A grouping genetic algorithm is proposed to find a solution which minimizes costs. The computational results demonstrate the effectiveness of the algorithm across a wide range of problems. The GGA is shown to be a useful tool to efficiently allocate the limited number of channels available. (C) 2004 Elsevier Ltd. All rights reserved.