版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
作者机构:Penn State Univ Dept Elect Engn University Pk PA 16802 USA
出 版 物:《IEEE TRANSACTIONS ON IMAGE PROCESSING》 (IEEE Trans Image Process)
年 卷 期:1999年第8卷第6期
页 面:863-867页
核心收录:
学科分类:0808[工学-电气工程] 08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:National Science Foundation NSF (IIS-9624870)
主 题:hidden Markov models image coding joint source-channel coding least mean square methods Markov mesh model
摘 要:Joint source-channel (JSC) decoding based on residual source redundancy is a technique for providing channel robustness to quantized data. Previous work assumed a model equivalent to viewing the encoder/noisy channel tandem as a discrete hidden Markov model (HMM) with transmitted indices the hidden, states. Here, me generalize this HMM-based (I-D) approach for images, using the more powerful hidden Markov mesh random field (HMMRF) model. While previous state estimation methods for HMMRF s base estimates on only a causal subset of the observed data, our new method uses both causal and anticausal subsets. For JSC-based image decoding, the new method provides significant benefits over several competing techniques.