咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Improved image decoding over n... 收藏

Improved image decoding over noisy channels using minimum mean-squared estimation and a Markov mesh

改进的图像多通道解码嘈杂的使用最小均方估计和马尔科夫网

作     者:Park, MS Miller, DJ 

作者机构:Penn State Univ Dept Elect Engn University Pk PA 16802 USA 

出 版 物:《IEEE TRANSACTIONS ON IMAGE PROCESSING》 (IEEE Trans Image Process)

年 卷 期:1999年第8卷第6期

页      面:863-867页

核心收录:

学科分类:0808[工学-电气工程] 08[工学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:National Science Foundation  NSF  (IIS-9624870) 

主  题:hidden Markov models image coding joint source-channel coding least mean square methods Markov mesh model 

摘      要:Joint source-channel (JSC) decoding based on residual source redundancy is a technique for providing channel robustness to quantized data. Previous work assumed a model equivalent to viewing the encoder/noisy channel tandem as a discrete hidden Markov model (HMM) with transmitted indices the hidden, states. Here, me generalize this HMM-based (I-D) approach for images, using the more powerful hidden Markov mesh random field (HMMRF) model. While previous state estimation methods for HMMRF s base estimates on only a causal subset of the observed data, our new method uses both causal and anticausal subsets. For JSC-based image decoding, the new method provides significant benefits over several competing techniques.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分